Multiphase Flow of CO<sub>2</sub> and Brine: Fundamental Concepts to Optimization

> Sally M. Benson<sup>1</sup>, Ljuba Miljkovic<sup>2</sup>, Dmitriy Silin<sup>2</sup> and Christine Doughty<sup>2</sup>

Energy Resources Engineering Department, Stanford University Earth Sciences Division, Lawrence Berkeley National Laboratory

# Key Issues for CO<sub>2</sub> Storage in Deep Geological Formations

- How big will the CO<sub>2</sub> plume be?
- What fraction of the pore space can be filled with CO<sub>2</sub>?
- How much CO<sub>2</sub> will be dissolved?
- How much will capillary trapping immobilize CO<sub>2</sub>?
- How fast could CO<sub>2</sub> leak up a fault zone?



# **Complex Behavior at Every Scale**

Seismic Tomogram Daley et al., 2007

X-ray Tomogram (L. Tomutsa, LBNL)



**Core Scale** 



#### TOUGH2 Simulation C. Doughty, LBNL



### **Reservoir Scale**

# Simulation with TOUGH2

### Two-phase system

- Native brine is wetting phase
- Injected supercritical CO<sub>2</sub> is nonwetting phase
- Fluid flow modeled with multiphase extension of Darcy's law
- Hysteretic relative permeability and capillary pressure functions describe interaction between phases
- CO<sub>2</sub> partially dissolves in brine according to Henry's Law
- Isothermal simulations

*Hysteretic Capillary Pressure and Relative Permeability Curves Used by TOUGH2* 



## **Core Flood Experiments**

5% Fractional Flow of CO<sub>2</sub>



20% Fractional Flow of CO<sub>2</sub>





### Berea Sandstone Core













## Simulated Capillary Pressure



### Simulated Capillary Pressure



### Simulated Capillary Pressure



# Frio Brine Pilot Test

- 1,540 m deep
- Formation properties
  - Average permeability: 2.1 darcy
  - Average porosity: 33%
  - 5.5 m injection zone
- 10 day injection test @ 2.6 kg/s
- 1,600 tonnes CO<sub>2</sub> injection





## Frio Formation CO<sub>2</sub> Migration and Pressure Data



# **One-D** Simulations

#### CO<sub>2</sub> Migration

#### Match of Pressure Transient Data







But,  $s_{lr}=0.8!$ 

# Hydrologic Properties



Data provided by Shinichi Sakurai, TBEG

# 2-D Simulations



### **Gravity Only**

### **Gravity Plus Heterogeneity**

Best match of breakthrough with  $s_{lr} = 0.4$ 

# Dissolution of CO<sub>2</sub>



#### **1-D** Simulation

#### 2-D Simulation with Gravity

Simulated Dissolution Rates Depend Strongly on Flow Geometry

# **Reservoir Scale Phenomena**



#### Injection Scenario

20 years Injection @ 0.66 Mt/year

30 year rest and observation period





# Base Case (Moderate Permeability)



# Low Permeability Reservoir



### High Permeability Reservoir



# Storage Capacity and Trapping at the End of the 30-year Rest Period



# Conclusions

- Heterogeneity at every scale results in complex behavior which influences
  - CO<sub>2</sub> migration rates
  - Pressure buildup
  - Capacity
  - Dissolution
  - Capillary trapping
- Dominant processes depend on scale; for the examples presented here
  - Core scale variability controlled by capillary effects
  - Intra-reservoir scale processes dominated by gravity
  - Reservoir scale controlled by complex interplay of all of the above
- Up-scaling schemes that simultaneously predict all of the key properties need to be developed
- High resolution experimental observations are needed to gain insight and guide theory and modeling